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Abstract. The density of states for a tight-binding electron in disordered coupled chains with 
a weak Gaussian diagonal randomness is simulated using Dean’s method under various 
magnetic fields. These data are compared with the results of the coherent-potential approxi- 
mation (CPA) based on the analytic Green function obtained recently by the present authors. 
The CPA is shown to give quantitatively good results except in the near-tail regions. The 
scaling behaviour near the band edges (including the near-tail regions) are also examined in 
detail. It is found that, when the magnetic field is above a critical field, scaling exists and 
follows the one-dimensional universal function. Below this critical field, a non-universal 
energy shift is required before scaling can apply. The existence of this energy shift also limits 
the range of scaling to a smaller randomness. 

1. Introduction 

In the past few years, much attention has been focused on the universal scaling behaviour 
of the electronic density of states (DOS) near the band edge of weakly disordered systems. 
In their classic work, Halperin and Lax (HL) (1966) have presented avariational approach 
to the calculation of the band tail DOS. In one dimension the predictions of the HL theory 
have been corroborated by more exact treatments for both continuous (Halperin 196.5) 
and discretised (Derrida and Gardner 1984) Schrodinger equations. The scaling behav- 
iour found in the near-tail region has been extended to regions near the band edges by 
reducing the problem to a white-noise model (WNM) (Cohen et a1 1985). In dimensions 
2 G d < 4, a non-universal energy shift is required before scaling can apply. For a tight- 
binding model with Gaussian diagonal randomness, the scaling behaviour near the band 
edges has been discussed in detail using the effective-medium approach (Economou et 
a1 1985). According to Economou et al(198.5), three regions can be defined qualitatively 
near the band edge. The first region (region I) is the region near the edge of the 
band coherent-potential approximation (CPA). In this region, scaling exists and the 
corresponding scaling relations can be obtained from the band CPA equation. The second 
region (region 11) is the near-tail region where the scaling theory of HL applies with the 
same scaling relations found in region I. Since, in this region, the localisation length of 
the localised states is much greater than the lattice constant, the single-site CPA always 
underestimates the DOS. The above two regions can be joined smoothly to form a single 
scaling region near the band edge. The entire scaling region has been seen numerically 
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in one, two and three dimensions (Zhang and Sheng 1986). The third region is the deep 
tail region where the localisation length of the localised states is of the order of the lattice 
constant. This region is non-universal and the CPA becomes valid. In one dimension the 
above scaling behaviour near the band edge has also been extended to the case of off- 
diagonal randomness (Evangelou 1987). 

Recently, the present authors have formulated the Green functions (GFS) for a Bloch 
electron on coupled chains in a magnetic field y (in the units of the flux quantum) (Zhang 
and Jing 1989). The magnetic field is shown to open a gap in the continuous spectrum 
and generates various behaviours of the DOS. However, except at some special magnetic 
fields, all the singularities are found to be one dimensional. The analytic GFS obtained 
have been used to study the properties of the localised condensation of an impure ladder 
superconducting network (Jing and Zhang 1989). 

The main purpose of this work is to study the scaling behaviour in regions I and I1 
near the band edges of weakly disordered coupled chains in a magnetic field. In such a 
system, although the singularities at the band edges of the pure system are one dimen- 
sional, it is not clear whether the DOS near the band edge will follow any scaling law. The 
reasons are the following. It has been shown that, on the band edges of the pure coupled 
chains, the wavevector of the wavefunction depends on the magnetic field in a non- 
trivial way (Rammal et af 1983). When the coupled chains become random, it is not 
known how the reduction to the WNM can be made. It has also been shown that, when 
the magnetic field is above a critical value VI ,  the amplitude of the localised states (if 
they appear) are always oscillatory (Jing and Zhang 1989). This makes the previously 
used theoretical methods, such as the variational approach of HL and the non-analytic 
weak-disorder expansion of Derrida and Gardner (1984), inapplicable. However, we 
can study this problem using the following approach. Since the analytic GF and its 
singularities near the band edges of the pure system are known, the scaling relations in 
region I can be obtained using the band CPA equation. If the scaling behaviour exists 
near the band edge, it is natural to extend the scaling relations found in region I to region 
11. The existence of the entire scaling region will finally be checked by the numerical 
simulation data. 

In this work, we consider only the case of diagonal disorder. The site energies are 
random with a Gaussian distribution of various W .  For any given W and magnetic field 
y ,  the DOS is simulated using the method of Dean (1972). It is found that the DOS near 
the band edges indeed follow a scaling function which is just the one-dimensional 
universal function when the magnetic field is above a critical value rl. Below this critical 
field, a non-universal energy shift is required before the scaling can apply. The existence 
of such a non-universal shift limits the range of the scaling to a smaller W .  In general, a 
magnetic-field-dependent effective one-dimensional band width can be defined near the 
band edge which also determines the scaling range of W .  The scaling range of W is 
strongly suppressed as the critical field rl is approached from both sides. 

Before we examine the scaling behaviour near the band edge, we shall first discuss 
the overall feature of the DOS under various magnetic fields. Here two methods are used. 
Analytically, using the known GF of the pure system, CPA calculations can be carried 
out. Numerically, the DOS can also be obtained using Dean’s method. On comparison 
with the simulation data, the CPA is shown to give very good results quantitatively except 
in the near-tail region (region 11). In § 2, we shall briefly describe the model and outline 
the results of the analytic GFS obtained previously. The results of the CPA calculations 
will also be given. The scaling behaviour near the band edge will be discussed in detail 
in § 3 where the scaling relations are first obtained using the band CPA equation in region 
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Figure 1. A tight-binding electron on coupled chains in a uniform magnetic field H .  A is the 
vector potential, m is the position of a site along a chain with the lattice constant a whereas 
(Y = + 1 and (Y = - 1 stand for the upper and lower chains, respectively. 

m - I  m m + l  

I and then the existence of the entire scaling region is confirmed by the numerical 
simulations. The conclusions will be given in 8 4. 

2. The model and CPA calculations 

Consider a single-band tight-binding electron on coupled chains as shown in figure 1. 
Let E ,  be the site energy and t be the constant-hopping matrix between the nearest- 
neighbour sites both in the same chain and in different chains. When a uniform magnetic 
field H is applied perpendicular to the ladder with H = H i  ( H  > 0) and vector potential 
A = ( - H y ,  0, 0), the corresponding Hamiltonian, in the Wannier representation, can 
be written as 

+ exp - /m ,  a)(m + 1, all r3 
where m is the position of a site along a chain ( x  coordinate) whereas a = 1 and a = - 1 
stand for the upper and lower chains, respectively ( y  coordinate) (figure 1). The value 
of y is determined by the magnetic field through the relation y = 2m$/&, where & 
(= hc/e) is a flux quantum and @ (= Ha2) is the flux passing through a unit cell of lattice 
constant a. Here, for simplicity, we have assumed the same matrix t for both intra-chain 
and inter-chain hoppings and a square unit cell. When E ,  is a constant .so, the (diagonal) 
GF of the pure system has been evaluated by the present authors (Zhang and Jing 1989). 
Here we shall write down some useful results. Let z = E t iq the GF has the following 
form: 

where 
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and 

f(y)  = tV4 + 1/sin2(y/2). 

Since the functions &and < in equation (2) are multi-valued, certain branch cuts 
have to be drawn in order to determine their values. For the function di, we have 
chosen a branch cut between the points - f ( y )  andf(y) on the real axis of the Z - E ~ )  plane, 
while for the function (or G) a branch cut between the points -2t and 2r on 
the real axis of the a+ (or a - )  plane has been drawn. Using the above procedure, the GF 
of equation (2) can be evaluated explicitly. It is not difficult to show that the symmetry 
relation G(z - E ( ) ,  2n - y )  = G(z  - E ( ) ,  y )  exists and we only have to consider the 
magnetic field in the region 0 S y G n. In our previous work, three different types of GF 
have been found in the following regions; 0 C y < yl ,  < y < y2 and y2 < y c JG, where 
yl  and y 2  are determined by the relations 

c0s(yl/2) = 2sin2(y1/2) cos( y2 /2) = 2 (7) 
with the values 7 ,  = 0.4371. and y2  = 2n/3. 

When E, is random with a Gaussian distribution P ( E J  of variance W ,  using equation 
(2), one can perform a CPA calculation in the presence of any magnetic field. The self- 
energy C ( E ,  y )  is determined from the usual CPA equation 

where G(E - E) is given by equation (2) with E" = C. For any given complex number 
2 ,  similar branch cuts can be drawn to evaluate G ( E  - 2)  explicitly. The self-consistent 
solution of equation (8) gives the DOS, i.e. pCPA(E)  = - (l/n) Im[C(E - C)]. In figures 
2(a), 2(6) and 2(c) the CPA results in the three different regions: y = 0.40 n, y = 0.62 71. 

and y = 0.90 n, which are plotted (full curves) for the case W/t  = 0.4. In the numerical 
calculations, we have taken t = 1, or equivalently, taken t as the energy unit. These 
results are compared with the numerically simulated DOS histograms. Since the DOS is 
symmetric with respect to E = 0, only the E 3 0 half-space has been drawn. The CPA is 
able to give quantitatively good results for all three regions of y except in the near-tail 
region (region I1 as discussed in § 1) where the CPA always underestimates the DOS as 
expected. This is also true when W/t = 1. In this case, the DOS becomes smoother and 
has less structure. In figure 2, we have also plotted the DOS of the pure system (W/t = 0) 
(broken curves) for comparison. 

3. Universal scaling near the band edge 

As mentioned in 0 1, the wavevector k of the wavefunction on the band edges of the 
pure system depends on the magnetic field y in the following non-trivial way (Rammal 
et a1 1983); when y < yl, k = 0, and, when y 2 yl,  

2 cos k sin2(y/2) = cos(y/2)Vl + 4 sin2 k sin2(y/2). 

Thus, it is not known how the reduction to the WNM can be made. Also because when 
y > y , ,  the amplitude of the localised states will always be oscillatory (Jing and Zhang 
1989), it is not clear whether the entire scaling region of the DOS near the band edges 
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found in the one-dimensional case will still be valid in the case of coupled chains under 
a magnetic field. To study this problem, as mentioned in Q 1, we use the following 
procedure. Taking into account the fact that the singularities at the band edges are one 
dimensional, we use the effective-medium approach of Economou et af (1985) to derive 
a one-dimensional scaling relation for the self-energy with an effective one-dimensional 
band width. We simply assume that the natural length unit is also one dimensional. If 
scaling exists near the band edge, the scaling relations found in region I is expected to 
extend to region I1 and to form an entire scaling region near the band edge. The 
dimensionless DOS can then be obtained in terms of the dimensionless energy. The 
questions of the validity of our assumption and the existence of the scaling behaviour 
will finally be answered by the numerical data. Following Economou et a1 (1985), in the 
weak-disorder limit, equation (8) can be expanded as 

1 2 3 
E / t  

Figure 2. DOS for the cases W/t = 0.4 and (a) y = 
0.40n, ( b )  y = 0 . 6 2 ~  and (c) y = 0 . 9 0 ~ :  -, 
CPA results; the histograms are simulated by 
Dean's method; ---, DOS of the pure system 
(W/t = 0) where the arrows indicate the position 
of the singularities. Only the half-space E/ t  2 0 is 
shown. 

Near the upper band edge (UBE) of region I ,  the function G(E - 2 )  just outside the 
continuous spectrum can be obtained from equation (2). It can be shown from equation 
( 2 )  that the singularities of the GF C(E - E " )  at the band edges are given by the factors 
l/K and l/& for 0 s y < rl and rl < y s n, respectively. Thus, we consider these 
two cases separately. 
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3.1. 0 < y < 71 
In this case, the UBE is given by w, = 0 or Eb = t[2 cos(y/2) + 11. For energy slightly 
outside Eh, E = Eb + AE, it can be shown from equation (2) that the GF has the following 
behaviour: 

G ( E  - 2 )  l / d 4 V ( A E  - 2 )  + D(E, y )  (10) 

~ ( y )  = 4t[cos(y/2) - 2 sin2(y/2)], (11) 

with 

and D is a function of y and E. If W is sufficiently small, we can approximate D by its 
value at the UBE E ,  in which case D has the following form: 

Db(y) E D(Eb, y )  

[cos y - 2 sin y sin(y/2)] 
4t[cos(y/2) - 2 sin2(y/2)]<[cos y + c0s(y/2)]~ - 1' 

- - 

Substituting equation (10) into equation (9), we have 

C W2/d4V(AE - C) + W2Db. 

Equation (13) can be rewritten as 

with 

l? = (AE - w2Db)/&ol (15) 

E01 = (W4/V)1'3. (16) 

2 = (2  - W2D,)/EOl 

and 

Equations (14) and (16) are the typical one-dimensional results with 4V as the effective 
band-width. Here, the energy AE should be shifted by a non-universal value W2Db 
before scaling can apply, However, unlike the WNM in dimensions 2 S d < 4, this non- 
universal energy shift is not caused by the existence of a lattice constant to remove the 
ultraviolet divergence. Since the energy unit col is one dimensional, we shall also take 
the one-dimensional length unit Lol = W-2/3V2/3a as the natural length (Economou et 
a1 1985). Thus, if the entire scaling region exists near the band edge, the dimensionless 
DOS p ( E )  = as a function of the shifted and scaled energy l? should be a 
universal function in both region I and region 11. It is plausible to guess that this universal 
function is identical with the one-dimensional universal function which has the form 
(Derrida and Gardner 1984) 

p ( E )  = N+/N? (17) 

with 

N ,  = loz dt/t"/2 exp( - i t3  + 2E't). (18) 

Numerically, the DOS is simulated using Dean's method for coupled chains of length 
lo4 lattice constants and the results of 15-20 configurations are averaged depending on 
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Figure 3. For 0 6 y-< 7, = 0 . 4 3 1 ~ ~  a plot of the dimensionless DOS as a function of the shifted 
and scaled energy E:  -, result of equation (17); 0,  W/t = 0.4, y = 0.00; X ,  W/t = 0.4, 
y = 0.08n;0, W/t = 0.4, y = 0.161~; +, W/t = 0.4, y = 0.241~;T, W/t = 0.4, y = 0.281~; A, 
W/t = 0.4, y = 0 . 3 6 ~ ;  0, W/t = 0.4, y = 0.381~. 

- 

- 

8 - 

I I \ 
0 1 2 3 

i; 
Figure 4. For y = yl ,  a plot of the dimensionless DOS as a function of the scaled energy E 
(also shifted when y < VI): - , result of equation (17); 0, W/t = 0.01, y = 0 . 4 0 ~ ;  0,  
W/t = 0.05, y = 0 . 4 0 ~ ;  X ,  W/t = 0.10, y = 0 .40~ ;  A, W/t = 0.20, y = 0 . 4 0 ~ ;  M, W/t  = 
0.30, y = 0 . 4 0 ~ ;  A, W/t = 0.01, y = 0 . 4 6 ~ ;  T, W/t  = 0.05, y = 0.461~; +, W/t = 0.10, y = 
0 . 4 6 ~ ;  0, W/t = 0.20, y = 0 . 4 6 ~ .  

the value of Wand y .  In figure 3 the function log,, p ( E )  is plotted against the shifted and 
scaled energy of equation (15) for W/t = 0.4 and various values of y .  The full curve is 
the result of equation (17). Except for the cases y = 0.36n and 0 . 3 8 ~ ,  the scaling of y 
does exist and follows the one-dimensional universal function of equation (17). There 
is a systematic deviation from equation (17) as y approaches rl (=0.43n). This is 
because, when rl is approached, the effective band width 4V of equation (11) shrinks 
to zero as can be seen from equation (7) and the scaling range of Wis strongly suppressed. 
Thus, we would expect that, even when y is very close to yl, scaling will exist when W is 
sufficiently small. This is shown in figure 4 when y = 0.40n. The function log,, p ( E )  
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indeed approaches the result of equation (17) as W/t becomes smaller than 0.01. For a 
fixed y = 0.16n, we have also plotted the function log,, p ( E )  for various values of W/t 
in figure 5 .  The systematic deviation from the scaling function as W/t is increased above 
0.4 is due to the invalidity of the constant energy shift Db given in equation (12). Thus 
the existence of this energy shift also suppresses the range of scaling. 

If we roughly define region I as the region where the DOS is higher than one fifth of 
its maximum value near the band edge (see figure 2 for instance), then regions I and I1 
are roughly separated by E = 1.2 which is consistent with the value found in figure 4 of 
Economou et aZ(l985).  Figures 3-5 do confirm that the entire scaling region exists and 
follows the one-dimensional universal function. The accuracy of our numerical data is 
limited by the finite number of configurations used. As E is farther away from the band 
edge, the smoothness of the DOS gives large fluctuations in the numerical data and more 
configurations are required to give a reliable result. The error bars for figures 3-5 vary 
from - less than the size of the symbols for I? s 1 to about twice the size of symbols for 
E a 2 .  

3.2. yl < y s n 
In this case, the UBE is given by the condition x = 0 or Eb = f ( y )  of equation (6). For 
energies slightly outside Eb, E = Eb + A E ,  it can be shown from equation (2) that the 
GF behaves like 

G(E  - 2 )  1/-d4V(AE - 2 )  

with 

v = t2[cos2(y/2) - 4 sin4(y/2)]/2f(y) sin4(y/2) (20) 
wheref(y) is given by equation (6). When equation (19)  is compared with equation (lo), 
it is easy to see that scaling (if it exists) will again be one-dimensional with eO1 and Lo* as 
the energy and length units, except now V is given by equation (20). In this case, no 
energy shift is required before scaling can apply. Thus, unlike the case in 0 3.1 , here, the 
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Figure 7: For n 5 y > 7, = 0.43n, a plot of the dimensionless DOS as a function of scaled 
energy E: -, result of equation (17); 0, W/t = 0.2, y = 0 . 9 ~ ;  0, w/t = 0.4, Y = 0 . 9 ~ ;  
0, W/t = 0.6, y = 0 . 9 ~ ;  A = W/t = 0.8, y = 0 . 9 ~ ;  +, W/t = 1.0, y = 0 . 9 ~ .  

scaling range of W/t is limited by the effective band width 4Vof equation (20) alone. In 
figure 6 the function loglo p ( E )  is plotted for W/t = 0.4 and various values of y .  For y in 
the region 0 .61~ < y 6 JG, the scaling holds pretty well and follows the one-dimensional 
universal function. As y < 0.6n, the systematic deviation is due to the shrinking of the 
effective band width 4V of equation (20) when rl is approached. This shrinking again 
limits the scaling to a smaller value of W/t. This is demonstrated in figure 4 with y = 
0 . 4 6 ~ .  There is a systematic approach to  the universal function in equation (17) as W/t 
is decreased and the scaling seems to hold when W/t < 0.01. Finally, in figure 7, we have 



Xiao-Dun Jing and Zhao-Qing Zhang 

plotted the function log,, O(E)  for the fixed value of y = 0 . 9 ~  and different values of 
W/t. Unlike the case in § 3.1 (as shown in figure 5 ) ,  here, the scaling holds even when 
W/t = 1.0 owing to the absence of the energy shift Db. 

4. Conclusions 

In this work, we have studied the DOS and its scaling behaviour near the band edges of 
weakly disordered coupled chains in a magnetic field. Only the site energies are con- 
sidered to be random with a Gaussian distribution of variance W .  On comparison with 
the simulation data obtained using Dean’s method, except in the near-tail regions the 
CPA is shown to give quantitatively good results for all three different kinds of GF in 
various magnetic fields (figure 2). The scaling behaviour in the near-band-edge regions 
has been studied in detail. The scaling relations found from the band CPA equation in 
region I is naturally extended to the near-tail region (region 11) and the existence of the 
entire scaling region near the band edge is confirmed numerically. Moreover, an effective 
one-dimensional band width can be defined and the scaling law is such that the DOS 
follows the usual one-dimensional universal function. This effective band width shrinks 
to zero as the critical field rl (= 0 . 4 3 ~ )  is approached from both sides. This shrinking 
strongly suppresses the scaling range of W/t. Below the critical field yl, a non-universal 
energy shift is required before the scaling can apply. The existence of this energy shift 
also limits the range of scaling to a smaller W/t. 
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